Existence and Uniqueness of Generalized and Mixed Finite Element Solutions for Steady Boussinesq Equation
نویسندگان
چکیده
Herein, we mainly employ the fixed point theorem and Lax-Milgram in functional analysis to prove existence uniqueness of generalized mixed finite element (MFE) solutions for two-dimensional steady Boussinesq equation. Thus, can fill gap research equation since existing studies are assumed solution without providing proof.
منابع مشابه
Qualitative Properties and Existence of Solutions for a Generalized Fisher-like Equation
This paper is devoted to the study of an eigenvalue second order differential equation, supplied with homogenous Dirichlet conditions and set on the real line. In the linear case, the equation arises in the study of a reaction-diffusion system involved in disease propagation throughout a given population. Under some relations upon the real parameters and coefficients, we present some existence ...
متن کاملOn existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation
In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we give an example to illustrate the applications of our results.
متن کاملErratum to: Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation
We show that the existence of a principal eigenvalue of a linear differential operator claimed in [4] does not always hold; hence, the proof of the stability and uniqueness of positive steady-state solution in [4] are not correct. For the linearized operator (φ ∈ X = {v ∈ C 2 [−1, 1] : v(±1) = 0}) L[φ] = φ (x) + λφ(x) − λφ(x) 1 −1 f (x, y)u(y)dy − λu(x) 1 −1 f (x, y)φ(y)dy, (1) where f ∈ L 2 ((...
متن کاملExistence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation
In this paper, we consider a dynamical model of population biology which is of the classical Fisher type, but the competition interaction between individuals is nonlocal. The existence, uniqueness, and stability of the steady state solution of the nonlocal problem on a bounded interval with homogeneous Dirichlet boundary conditions are studied. Mathematics subject classification (2010). 35K57 ·...
متن کاملExistence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation
In this paper, we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation. Moreover, the finite-time blow-up of the solution for the equation is investigated by the concavity method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2023
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11030545